谷歌浏览器插件
订阅小程序
在清言上使用

Quantization of Mode Shifts in Nanocavities Integrated with Atomically Thin Sheets

ADVANCED OPTICAL MATERIALS(2022)

引用 2|浏览12
暂无评分
摘要
The unique optical properties of 2D layered materials are attractive for achieving increased functionality in integrated photonics. Owing to the van der Waals nature, these materials are ideal for integrating with nanoscale photonic structures. Here a carefully designed air-mode silicon photonic crystal nanobeam cavity for efficient control through 2D materials is reported. By systematically investigating various types and thicknesses of 2D materials, the authors are able to show that enhanced responsivity allows for giant shifts of the resonant wavelength. With atomically precise thickness over a macroscopic area, few-layer flakes give rise to quantization of the mode shifts. The dielectric constant of the flakes is extracted and found to be independent of the layer number down to a monolayer. Flexible reconfiguration of a cavity is demonstrated by stacking and removing ultrathin flakes. With an unconventional cavity design, these results open up new possibilities for photonic devices integrated with 2D materials.
更多
查看译文
关键词
2D materials,cavity mode modification,nanocavities,quantization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要