A horizon for haptic perception.

Journal of neurophysiology(2023)

引用 1|浏览5
暂无评分
摘要
The spatial limits of sensory acquisition (its sensory horizon) are a fundamental property of any sensorimotor system. In the present study, we sought to determine whether there is a sensory horizon for the human haptic modality. At first blush, it seems obvious that the haptic system is bounded by the space where the body can interact with the environment (e.g., the arm span). However, the human somatosensory system is exquisitely tuned to sensing with tools-blind-cane navigation being a classic example of this. The horizon of haptic perception therefore extends beyond body space, but to what extent is unknown. We first used neuromechanical modeling to determine the theoretical horizon, which we pinpointed as 6 m. We then used a psychophysical localization paradigm to behaviorally confirm that humans can haptically localize objects using a 6-m rod. This finding underscores the incredible flexibility of the brain's sensorimotor representations, as they can be adapted to sense an object many times longer than the user's own body. There are often spatial limits to where an active sensory system can sample information from the environment. Hand-held tools can extend human haptic perception beyond the body, but the limits of this extension are unknown. We used theoretical modeling and psychophysics to determine these spatial limits. We find that the ability to spatially localize objects through a tool extends at least 6 m beyond the user's body.
更多
查看译文
关键词
computational modeling,haptics,sensory horizon,tactile localization,tool use
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要