SARS-CoV-2 Viral Genes Compromise Survival and Functions of Human Pluripotent Stem Cell-derived Cardiomyocytes via Reducing Cellular ATP Level

biorxiv(2022)

引用 0|浏览6
暂无评分
摘要
Cardiac manifestations are commonly observed in COVID-19 patients and prominently contributed to overall mortality. Human myocardium could be infected by SARS-CoV-2, and human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are susceptible to SARS-CoV-2 infection. However, molecular mechanisms of SARS-CoV-2 gene-induced injury and dysfunction of human CMs remain elusive. Here, we find overexpression of three SARS-CoV-2 coding genes, Nsp6, Nsp8 and M, could globally compromise transcriptome of hPSC-CMs. Integrated transcriptomic analyses of hPSC-CMs infected by SARS-CoV-2 with hPSC-CMs of Nsp6, Nsp8 or M overexpression identified concordantly activated genes enriched into apoptosis and immune/inflammation responses, whereas reduced genes related to heart contraction and functions. Further, Nsp6, Nsp8 or M overexpression induce prominent apoptosis and electrical dysfunctions of hPSC-CMs. Global interactome analysis find Nsp6, Nsp8 and M all interact with ATPase subunits, leading to significantly reduced cellular ATP level of hPSC-CMs. Finally, we find two FDA-approved drugs, ivermectin and meclizine, could enhance the ATP level, and ameliorate cell death and dysfunctions of hPSC-CMs overexpressing Nsp6, Nsp8 or M. Overall, we uncover the global detrimental impacts of SARS-CoV-2 genes Nsp6, Nsp8 and M on the whole transcriptome and interactome of hPSC-CMs, define the crucial role of ATP level reduced by SARS-CoV-2 genes in CM death and functional abnormalities, and explore the potentially pharmaceutical approaches to ameliorate SARS-CoV-2 genes-induced CM injury and abnormalities. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要