Chrome Extension
WeChat Mini Program
Use on ChatGLM

The Complexin C-terminal Amphipathic Helix Stabilizes the Fusion Pore Open State by Sculpting Membranes.

Nature structural & molecular biology(2022)

Cited 10|Views50
No score
Abstract
Neurotransmitter release is mediated by proteins that drive synaptic vesicle fusion with the presynaptic plasma membrane. While soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) form the core of the fusion apparatus, additional proteins play key roles in the fusion pathway. Here, we report that the C-terminal amphipathic helix of the mammalian accessory protein, complexin (Cpx), exerts profound effects on membranes, including the formation of pores and the efficient budding and fission of vesicles. Using nanodisc-black lipid membrane electrophysiology, we demonstrate that the membrane remodeling activity of Cpx modulates the structure and stability of recombinant exocytic fusion pores. Cpx had particularly strong effects on pores formed by small numbers of SNAREs. Under these conditions, Cpx increased the current through individual pores 3.5-fold, and increased the open time fraction from roughly 0.1 to 1.0. We propose that the membrane sculpting activity of Cpx contributes to the phospholipid rearrangements that underlie fusion by stabilizing highly curved membrane fusion intermediates.
More
Translated text
Key words
Exocytosis,Membrane biophysics,Membrane proteins,Life Sciences,general,Biochemistry,Protein Structure,Membrane Biology,Biological Microscopy
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined