Effects of Dapagliflozin and Combination Therapy With Exenatide on Food-Cue Induced Brain Activation in Patients With Type 2 Diabetes

JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM(2022)

引用 6|浏览4
暂无评分
摘要
Context Sodium-glucose cotransporter-2 inhibitors (SGLT2i) cause less weight loss than expected based on urinary calorie excretion. This may be explained by SGLT2i-induced alterations in central reward and satiety circuits, leading to increased appetite and food intake. Glucagon-like peptide-1 receptor agonists are associated with reduced appetite and body weight, mediated by direct and indirect central nervous system (CNS) effects. Objective We investigated the separate and combined effects of dapagliflozin and exenatide on the CNS in participants with obesity and type 2 diabetes. Methods This was a 16-week, double-blind, randomized, placebo-controlled trial. Obese participants with type 2 diabetes (n = 64, age 63.5 +/- 0.9 years, BMI 31.7 +/- 0.6 kg/m(2)) were randomized (1:1:1:1) to dapagliflozin 10 mg with exenatide-matched placebo, exenatide twice daily 10 mu g with dapagliflozin-matched placebo, dapagliflozin and exenatide, or double placebo. Using functional MRI, the effects of treatments on CNS responses to viewing food pictures were assessed after 10 days and 16 weeks of treatment. Results After 10 days, dapagliflozin increased, whereas exenatide decreased CNS activation in the left putamen. Combination therapy had no effect on responses to food pictures. After 16 weeks, no changes in CNS activation were observed with dapagliflozin, but CNS activation was reduced with dapagliflozin-exenatide in right amygdala. Conclusion The early increase in CNS activation with dapagliflozin may contribute to the discrepancy between observed and expected weight loss. In combination therapy, exenatide blunted the increased CNS activation observed with dapagliflozin. These findings provide further insights into the weight-lowering mechanisms of SGLT2i and GLP-1 receptor agonists.
更多
查看译文
关键词
SGLT2 inhibitor, dapagliflozin, GLP-1 receptor agonist, exenatide, functional neuroimaging, central nervous system, satiety and reward circuits, body weight, type 2 diabetes, obesity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要