RMRP inhibition prevents NAFLD progression in rats via regulating miR-206/PTPN1 axis

Mammalian Genome(2022)

引用 8|浏览8
暂无评分
摘要
This study aimed to investigate the regulatory function of lncRNA RMRP in non-alcoholic fatty liver disease (NAFLD). In vitro and in vivo NAFLD models were constructed. Hematoxylin & Eosin (H&E) and Oil-Red O staining assays were conducted to observe the morphology and lipid accumulation in liver tissues. Triglycine (TG) secretion was detected by ELISA assay. The expression levels of RMRP, microRNA-206, PTPN1 (protein tyrosine phosphatase, non-receptor type 1), and their downstream genes were assessed by qRT-PCR and Western blot. The regulatory relationship among these molecules was determined by luciferase reporter and RNA pull-down assays. RMRP and PTPN1 were up-regulated, while miR-206 was down-regulated in the liver tissues of NAFLD patients and rat model. RMRP inhibition improved the pathological state and liver function-related indexes of liver lipid deposition in the liver tissues of NAFLD rats. RMRP inhibition alleviated steatosis and TG secretion in free fatty acids (FFA)-treated AML-12 cells. RMRP could bind to miR-206 and downregulate its expression. Meanwhile, RMRP inhibition attenuated lipid accumulation by downregulating the PTPN1-PP2ASP1-SREBP1C pathway. Furthermore, RMRP inhibited the miR-206/PTPN1-SREBP1C signaling pathway in NAFLD rats and FFA-treated AML-12 cells. RMRP inhibition prevented NAFLD progression in rats via targeting the miR-206/PTPN1 axis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要