Text Classification via Sentence-level Graph Convolutional Networks

KIISE Transactions on Computing Practices(2019)

Cited 2|Views1
No score
Abstract
텍스트 분류는 자연어처리 분야의 전통적인 문제이다. 기존의 RNN 및 CNN 기반 텍스트 분류 모델들은 순차적인 단어 구조에 의존하기 때문에 인접하지 않지만 관련성이 높은 단어 간의 관계를 유추하기 어렵다는 문제점이 있다. 반면 GCN(Graph Convolutional Network)은 그래프의 형태로 데이터를 입력받기 때문에 문장의 순차적 구조에 대한 의존도를 줄일 수 있다. 본 논문에서는 문서의 비순차적인 관계를 그래프로 담아내어 더욱 효과적으로 파악하고 분류하는 인공신경망 모델을 제안한다. 문서를 그래프로 표현하기 위해 각 단어를 그래프의 노드로 변환하고, 단어 간의 관계를 계산해 엣지로 정의한다. 최근에 제시된 GCN 구조를 통해 단어 간의 관계가 반영된 단어 벡터를 계산한 뒤, 어텐션 기반 요약 함수를 통해 문단을 주어진 클래스로 분류하는 방법을 제시한다. 실험 결과, 새롭게 제시된 모델이 RNN 및 CNN 기반 텍스트 분류 모델보다 좋은 성능을 보였다.
More
Translated text
Key words
convolutional networks,graph,classification,text,sentence-level
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined