Gold nanospheres assembly via corona discharge technique for flexible SERS substrate

OPTICS EXPRESS(2022)

引用 0|浏览10
暂无评分
摘要
Noble metal nanoparticles (NMNPs) assembly substrates with strongly enhanced local electromagnetic fields provide new possibilities for surface-enhanced Raman spectroscopy (SERS) sensing. Although the external-electric-field-based self-assembly (EEFSA) strategy for decreasing NMNP gap in liquid phase is relatively developed, it is rarely described in solid phase. Here, by combining corona discharge technique (CDT) as a simple EEFSA approach on flexible substrate surface modification, a flexible SERS substrate medicated with gold nanospheres (AuNSs) is produced. Because of the CDT's peculiar discharge event, makes AuNSs aggregation simply achieved. The modified flexible SERS substrate is sensitive to the detection limit of similar to 10(-5) mM for Rhodamine 6G (R6G), with a maximum enhancement factor of 2.79x10(6). Furthermore, finite-difference time-domain (FDTD) simulation confirms the SERS enhancement impact of AuNSs-based substrate. This study not only provides a low-cost, simple-to-process, high-yield, high sensitivity, and activity flexible SERS substrate, but also suggests a more practical and adaptable NMNPs self-assembly approach. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要