beta-Catenin-Specific Inhibitor, iCRT14, Promotes BoHV-1 Infection-Induced DNA Damage in Human A549 Lung Adenocarcinoma Cells by Enhancing Viral Protein Expression

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES(2022)

引用 2|浏览9
暂无评分
摘要
Oncolytic bovine herpesvirus type 1 (BoHV-1) infection induces DNA damage in human lung adenocarcinoma cell line A549. However, the underlying mechanisms are not fully understood. We found that BoHV-1 infection decreased the steady-state protein levels of p53-binding protein 1 (53BP1), which plays a central role in dictating DNA damage repair and maintaining genomic stability. Furthermore, BoHV-1 impaired the formation of 53BP1 foci, suggesting that BoHV-1 inhibits 53BP1-mediated DNA damage repair. Interestingly, BoHV-1 infection redistributed intracellular beta-catenin, and iCRT14 (5-[[2,5-Dimethyl-1-(3-pyridinyl)-1H-pyrrol-3-yl]methylene]-3-phenyl-2,4-thiazolidinedione), a beta-catenin-specific inhibitor, enhanced certain viral protein expression, such as the envelope glycoproteins gC and gD, and enhanced virus infection-induced DNA damage. Therefore, for the first time, we provide evidence showing that BoHV-1 infection disrupts 53BP1-mediated DNA damage repair and suggest beta-catenin as a potential host factor restricting both virus replication and DNA damage in A549 cells.
更多
查看译文
关键词
BoHV-1, beta-catenin, 53BP1, gamma H2AX, DNA damage
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要