谷歌浏览器插件
订阅小程序
在清言上使用

Basis-set correction for coupled-cluster estimation of dipole moments

JOURNAL OF CHEMICAL PHYSICS(2022)

引用 3|浏览5
暂无评分
摘要
The present work proposes an approach to obtain a basis-set correction based on density-functional theory (DFT) for the computation of molecular properties in wave-function theory (WFT). This approach allows one to accelerate the basis-set convergence of any energy derivative of a non-variational WFT method, generalizing previous works on the DFT-based basis-set correction where either only ground-state energies could be computed with non-variational wave functions [Loos et al., J. Phys. Chem. Lett. 10, 2931 (2019)] or properties could be computed as expectation values over variational wave functions [Giner et al., J. Chem. Phys. 155, 044109 (2021)]. This work focuses on the basis-set correction of dipole moments in coupled-cluster with single, double, and perturbative triple excitations [CCSD(T)], which is numerically tested on a set of 14 molecules with dipole moments covering two orders of magnitude. As the basis-set correction relies only on Hartree-Fock densities, its computational cost is marginal with respect to the one of the CCSD(T) calculations. Statistical analysis of the numerical results shows a clear improvement of the basis convergence of the dipole moment with respect to the usual CCSD(T) calculations. Published under an exclusive license by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要