Quasi-normal mode theory enforcing fundamental constraints for truncated expansions

arXiv: Applied Physics(2021)

引用 0|浏览6
暂无评分
摘要
We develop a quasi-normal mode theory (QNMT) to calculate a system's scattering $S$ matrix, simultaneously satisfying both energy conservation and reciprocity even for a small truncated set of resonances. It is a practical reduced-order (few-parameter) model based on the resonant frequencies and constant mode-to-port coupling coefficients, easily computed from an eigensolver without the need for QNM normalization. Furthermore, we show how low-$Q$ modes can be separated into an effective slowly varying background response $C$, giving an additional approximate formula for $S$, which is useful to describe general Fano-resonant phenomena. We demonstrate our formulation for both normal and fixed-angle oblique plane-wave incidence on various electromagnetic metasurfaces.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要