Физические аспекты диспергирования углерода в термовакуумной установке

V. A. Kutovyi,D. G. Malykhin, A. S. Kalchenko, R. L. Vasilenko

Poverhn.(2019)

引用 0|浏览6
暂无评分
摘要
Based on the combination of the vacuuming and high-speed thermal heating, the scientific and technical development of the high-performance thermo-vacuum method, which is an environmentally friendly process, was carried out with the continuous production of nanodispersed carbon. An analysis of the physical processes that affect a carbon material – a coarse-grained powder of graphite grade C1 – in a thermo-vacuum installation has been carried out. In the study of the structural composition of the graphite in initial state and processed in a thermo-vacuum installation, X-ray diffraction analysis and electron microscopy were used. The results of X-ray analysis showed that the original C1 grade graphite has two known modifications: hexagonal structure with lattice periods a = 0.2461±0.0002, c = 0.6705±0.0007 nm, and about 30% of rhombohedral structure with periods a = 0.2461±0.0001 and c = 1.003 ± 0.0002 nm (one and a half period of the main structure of graphite). In graphite treated in a thermo-vacuum installation, a superstructural rhombohedral phase – of the order of percent or fractions of a percent – with periods a = 0.492±0.0001 and c = 1.003±0.0002 nm was additionally detected. A phase with a monoclinic structure and with parameters a = 0.6075±0.0001, b = 0.4477±0.0002, c = 0.4913±0.0003 nm, and β = 99.6 ± 0.1° is also detected approximately with the same amount. The results of analysis and calculations are generally consistent with TEM images of the reciprocal lattice of processed graphite. As a result, it was shown that in a thermal vacuum installation, carbon undergoes a complex effect of heating, deformation, and ionization, which can significantly accelerate the process of obtaining nanodispersed carbon material with new physicochemical and mechanical properties. The results can be widely used for the industrial production of nanostructural materials.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要