谷歌浏览器插件
订阅小程序
在清言上使用

Experimental Study of a Millimeter-Sized Ga-In Drop Ablated by a Nanosecond Laser Pulse

Physics of fluids(2021)

引用 1|浏览10
暂无评分
摘要
The motion of millimeter gallium-indium (Ga-In) drops subject to intense Neodymium-doped Yttrium Aluminum Garnet (Nd: YAG) laser blasts in the air is investigated experimentally. The drop first experiences plasma emissions and then undergoes interfacial instabilities. The effective ablation pulse energy is quantified by the laser-induced shockwave propagation. The laser-blast-induced concave expansion and spanwise depression history is measured, and the data collapse on straight lines with proper rescaling of pulse energy and time. The propulsion speed of the drop is described by a semi-empirical model that considers the laser energy and fluence at the threshold of ablation. The data show that this propulsion speed scaling remains valid to the millimeter drop ablated by the pulsed laser with beam spot much smaller than the drop, although the original scaling was derived and verified for the indium-tin (In-Sn) droplet of tens of micrometers impacted by a laser pulse with the focal point larger than the droplet.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要