谷歌浏览器插件
订阅小程序
在清言上使用

Targeting Ribosome Biogenesis to Combat Tamoxifen Resistance in ER+ve Breast Cancer

Cancers(2022)

引用 8|浏览18
暂无评分
摘要
Breast cancer is a heterogeneous disease. Around 70% of breast cancers are estrogen receptor-positive (ER+ve), with tamoxifen being most commonly used as an adjuvant treatment to prevent recurrence and metastasis. However, half of the patients will eventually develop tamoxifen resistance. The overexpression of c-MYC can drive the development of ER+ve breast cancer and confer tamoxifen resistance through multiple pathways. One key mechanism is to enhance ribosome biogenesis, synthesising mature ribosomes. The over-production of ribosomes sustains the demand for proteins necessary to maintain a high cell proliferation rate and combat apoptosis induced by therapeutic agents. c-MYC overexpression can induce the expression of eIF4E that favours the translation of structured mRNA to produce oncogenic factors that promote cell proliferation and confer tamoxifen resistance. Either non-phosphorylated or phosphorylated eIF4E can mediate such an effect. Since ribosomes play an essential role in c-MYC-mediated cancer development, suppressing ribosome biogenesis may help reduce aggressiveness and reverse tamoxifen resistance in breast cancer. CX-5461, CX-3543 and haemanthamine have been shown to repress ribosome biogenesis. Using these chemicals might help reverse tamoxifen resistance in ER+ve breast cancer, provided that c-MYC-mediated ribosome biogenesis is the crucial factor for tamoxifen resistance. To employ these ribosome biogenesis inhibitors to combat tamoxifen resistance in the future, identification of predictive markers will be necessary.
更多
查看译文
关键词
breast cancer,c-MYC,ribosome biogenesis,tamoxifen resistance,eIF4E
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要