A Multimodal Sensory Apparatus for Robotic Prosthetic Feet Combining Optoelectronic Pressure Transducers and IMU

SENSORS(2022)

引用 5|浏览2
暂无评分
摘要
Timely and reliable identification of control phases is functional to the control of a powered robotic lower-limb prosthesis. This study presents a commercial energy-store-and-release foot prosthesis instrumented with a multimodal sensory system comprising optoelectronic pressure sensors (PS) and IMU. The performance was verified with eight healthy participants, comparing signals processed by two different algorithms, based on PS and IMU, respectively, for real-time detection of heel strike (HS) and toe-off (TO) events and an estimate of relevant biomechanical variables such as vertical ground reaction force (vGRF) and center of pressure along the sagittal axis (CoPy). The performance of both algorithms was benchmarked against a force platform and a marker-based stereophotogrammetric motion capture system. HS and TO were estimated with a time error lower than 0.100 s for both the algorithms, sufficient for the control of a lower-limb robotic prosthesis. Finally, the CoPy computed from the PS showed a Pearson correlation coefficient of 0.97 (0.02) with the same variable computed through the force platform.
更多
查看译文
关键词
prosthetics, wearable sensors, control, gait segmentation, optoelectronic sensors, inertial measurement unit
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要