Annealing temperature controlled crystallization mechanism and properties of gallium oxide film in forming gas atmosphere

JOURNAL OF THE AMERICAN CERAMIC SOCIETY(2022)

引用 8|浏览2
暂无评分
摘要
Gallium oxide (Ga2O3) films had been fabricated on Al2O3(0001) substrate by employing pulsed laser deposition (PLD) and annealed at different temperatures under forming gas (FG) atmosphere (95% N-2 + 5% H-2). The influence of annealing temperature on the structural, optical, chemical composition, and surface morphological properties of the Ga2O3 thin films was investigated comprehensively. The annealing processes with hydrogen gas play a crucial role in the characteristics of Ga2O3 thin films. A crystallization mechanism of Ga2O3 films controlled by annealing temperature has been proposed firstly and analyzed systematically, which contains three kinds of competitive mechanism, namely the thermal enhanced crystallization, the enhanced H-2 dissociative adsorption on Ga2O3 surfaces, and the high-temperature decomposition of Ga2O3. Both Ga+ and Ga3+ oxidation valence states were presented in all samples, which indicated lattice oxygen deficiency in Ga2O3 films. The variation of the non-lattice oxygen proportion of Ga2O3 films related to the crystallization mechanism firstly increased and then decreased with the increase of annealing temperature. The detailed crystallization mechanism of PLD-Ga2O3 films annealed in FG offers a guideline and references for the further fabrication of high-quality Ga2O3 films and their applications in high-performance devices.
更多
查看译文
关键词
annealing temperature,crystallization mechanism,forming gas,gallium oxide,pulsed laser deposition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要