谷歌浏览器插件
订阅小程序
在清言上使用

Optical-Tweezers-integrating-Differential-Dynamic-Microscopy Maps the Spatiotemporal Propagation of Nonlinear Strains in Polymer Blends and Composites

Nature communications(2022)

引用 6|浏览6
暂无评分
摘要
How local stresses propagate through polymeric fluids, and, more generally, how macromolecular dynamics give rise to viscoelasticity are open questions vital to wide-ranging scientific and industrial fields. Here, to unambiguously connect polymer dynamics to force response, and map stress propagation in macromolecular materials, we present a powerful approach-Optical Tweezers integrating Differential Dynamic Microscopy (OpTiDMM)-that simultaneously imposes local strains, measures resistive forces, and analyzes the motion of the surrounding polymers. Our measurements with blends of ring and linear polymers (DNA) and their composites with stiff polymers (microtubules) uncover a surprising resonant response, in which affine alignment, superdiffusivity, and elastic memory are maximized when the strain rate is comparable to the entanglement rate. Microtubules suppress this resonance, while substantially increasing elastic force and memory, due to varying degrees to which the polymers buildup, stretch and flow along the strain path, and configurationally dissipate stress. More broadly, the rich multi-scale coupling of mechanics and dynamics afforded by OpTiDDM, empowers its interdisciplinary use to elucidate non-trivial phenomena that sculpt stress propagation dynamics-critical to commercial applications and cell mechanics alike.
更多
查看译文
关键词
Characterization and analytical techniques,DNA and RNA,Imaging techniques,Polymers,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要