Calibration Experiments of CFOSAT Wavelength in the Southern South China Sea by Artificial Neural Networks

REMOTE SENSING(2022)

引用 6|浏览3
暂无评分
摘要
The wave data measured by CFOSAT (China France Oceanography Satellite) have been validated mainly based on numerical model outputs and altimetry products on a global scale. It is still necessary to further calibrate the data for specific regions, e.g., the southern South China Sea. This study analyses the practicability of calibrating the dominant wavelength by using artificial neural networks and mean impact value analysis based on two sets of buoy data with a 2-year observation period and contemporaneous ERA5 reanalysis data. The artificial neural network modeling experiments are repeated 1000 times randomly by Monte Carlo methods to avoid sampling uncertainty. Both experimental results based on the random sampling method and chronological sampling method are performed. Independent buoy observations are used to validate the calibration model. The results show that although there are obvious differences between the CFOSAT wavelength data and the field observations, the parameters observed by the satellite itself can effectively calibrate the data. In addition to the wavelength, nadir significant wave height, nadir wind speed, and the distance between the calibration point and satellite observation point are the most important parameters for the calibration. Accurate data from other sources, such as ERA5, would be helpful to further improve the calibration results. The variable contributing the most to the calibration effect is the mean wave period, which virtually provides relatively accurate wavelength information for the calibration network. These results verify the possibility of synchronous self-calibration for the CFOSAT wavelength data and provide a reference for the further calibration of the satellite products in other regions.
更多
查看译文
关键词
CFOSAT,wavelength,artificial neural network,calibration experiment,South China Sea
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要