谷歌浏览器插件
订阅小程序
在清言上使用

The Speed Limit of Optoelectronics

Nature communications(2022)

引用 28|浏览42
暂无评分
摘要
Light-field driven charge motion links semiconductor technology to electric fields with attosecond temporal control. Motivated by ultimate-speed electron-based signal processing, strong-field excitation has been identified viable for the ultrafast manipulation of a solid’s electronic properties but found to evoke perplexing post-excitation dynamics. Here, we report on single-photon-populating the conduction band of a wide-gap dielectric within approximately one femtosecond. We control the subsequent Bloch wavepacket motion with the electric field of visible light. The resulting current allows sampling optical fields and tracking charge motion driven by optical signals. Our approach utilizes a large fraction of the conduction-band bandwidth to maximize operating speed. We identify population transfer to adjacent bands and the associated group velocity inversion as the mechanism ultimately limiting how fast electric currents can be controlled in solids. Our results imply a fundamental limit for classical signal processing and suggest the feasibility of solid-state optoelectronics up to 1 PHz frequency. Though strong-field induced carrier excitation allows for exploring ultrafast electronic properties of a material, characterizing post-excitation dynamics is a challenge. Here, the authors report linear petahertz photoconductive sampling in a solid and use it to real-time probe conduction band electron motion.
更多
查看译文
关键词
Electronic properties and materials,Optoelectronic devices and components,Ultrafast photonics,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要