Scalable Synthesis of Monolayer Hexagonal Boron Nitride on Graphene with Giant Bandgap Renormalization

ADVANCED MATERIALS(2022)

引用 16|浏览29
暂无评分
摘要
Monolayer hexagonal boron nitride (hBN) has been widely considered a fundamental building block for 2D heterostructures and devices. However, the controlled and scalable synthesis of hBN and its 2D heterostructures has remained a daunting challenge. Here, an hBN/graphene (hBN/G) interface-mediated growth process for the controlled synthesis of high-quality monolayer hBN is proposed and further demonstrated. It is discovered that the in-plane hBN/G interface can be precisely controlled, enabling the scalable epitaxy of unidirectional monolayer hBN on graphene, which exhibits a uniform moire superlattice consistent with single-domain hBN, aligned to the underlying graphene lattice. Furthermore, it is identified that the deep-ultraviolet emission at 6.12 eV stems from the 1s-exciton state of monolayer hBN with a giant renormalized direct bandgap on graphene. This work provides a viable path for the controlled synthesis of ultraclean, wafer-scale, atomically ordered 2D quantum materials, as well as the fabrication of 2D quantum electronic and optoelectronic devices.
更多
查看译文
关键词
2D heterostructures, bandgap, graphene, moire superlattices, monolayer hexagonal boron nitride
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要