Dorsiflexion and Hop Biomechanics Associate with Greater Talar Cartilage Deformation in Those with Chronic Ankle Instability

MEDICINE & SCIENCE IN SPORTS & EXERCISE(2022)

引用 2|浏览5
暂无评分
摘要
Purpose This study aimed to identify associations between dorsiflexion range of motion (DFROM), functional hop test performance, and hopping biomechanics with the magnitude of talar cartilage deformation after a standardized hopping protocol in individuals with and without chronic ankle instability (CAI). Methods Thirty CAI and 30 healthy individuals participated. Ankle DFROM was assessed using the weight-bearing lunge test. Four different functional hop tests were assessed. Three-dimensional kinematics and kinetics were sampled during a 60-cm single-leg hop. We calculated cartilage deformation after a dynamic loading protocol consisting of sixty 60-cm single-leg forward hops by assessing the change in average thickness for the overall, medial, and lateral talar cartilage. Linear regressions examined the associations between cartilage deformation magnitude and DFROM, functional hop tests, and hop biomechanical variables after accounting for body weight and time since the initial ankle sprain. Results In CAI group, lesser static DFROM (Delta R-2 = 0.22) and smaller peak ankle dorsiflexion angle (Delta R-2 = 0.17) was associated with greater medial deformation. Greater peak vertical ground reaction force (vGRF) (Delta R-2 = 0.26-0.28) was associated with greater medial and overall deformation. Greater vGRF loading rate (Delta R-2 = 0.23-0.35) was associated with greater lateral and overall deformation. Greater side hop test times (Delta R-2 = 0.31-0.36) and ankle plantarflexion at initial contact (Delta R-2 = 0.23-0.38) were associated with greater medial, lateral, and overall deformation. In the control group, lesser side hop test times (Delta R-2 = 0.14), greater crossover hop distances (Delta R-2 = 0.14), and greater single-hop distances (Delta R-2 = 0.21) were associated with greater overall deformation. Conclusions Our results indicate that lesser static DFROM, poorer functional hop test performance, and hop biomechanics associate with greater talar cartilage deformation after a dynamic loading protocol in those with CAI. These factors may represent targets for therapeutic interventions within this population to slow ankle posttraumatic osteoarthritis progression.
更多
查看译文
关键词
ULTRASONOGRAPHY, HOP PERFORMANCE, POSTTRAUMATIC OSTEOARTHRITIS, DEGENERATION
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要