High-Density Oxygen Doping of Conductive Metal Sulfides for Better Polysulfide Trapping and Li2S-S-8 Redox Kinetics in High Areal Capacity Lithium-Sulfur Batteries

ADVANCED SCIENCE(2022)

引用 24|浏览15
暂无评分
摘要
Exploring new materials and methods to achieve high utilization of sulfur with lean electrolyte is still a common concern in lithium-sulfur batteries. Here, high-density oxygen doping chemistry is introduced for making highly conducting, chemically stable sulfides with a much higher affinity to lithium polysulfides. It is found that doping large amounts of oxygen into NiCo2S4 is feasible and can make it outperform the pristine oxides and natively oxidized sulfides. Taking the advantages of high conductivity, chemical stability, the introduced large Li-O interactions, and activated Co (Ni) facets for catalyzing S-n(2-), the NiCo2(O-S)(4) is able to accelerate the Li2S-S-8 redox kinetics. Specifically, lithium-sulfur batteries using free-standing NiCo2(O-S)(4) paper and interlayer exhibit the highest capacity of 8.68 mAh cm(-2) at 1.0 mA cm(-2) even with a sulfur loading of 8.75 mg cm(-2) and lean electrolyte of 3.8 mu L g(-1). The high-density oxygen doping chemistry can be also applied to other metal compounds, suggesting a potential way for developing more powerful catalysts towards high performance of Li-S batteries.
更多
查看译文
关键词
doping, free-standing paper, kinetics, lithium polysulfide (LiPS), lithium-sulfur batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要