Glycometabolic reprogramming-mediated proangiogenic phenotype enhancement of cancer-associated fibroblasts in oral squamous cell carcinoma: role of PGC-1α/PFKFB3 axis

BRITISH JOURNAL OF CANCER(2022)

引用 4|浏览5
暂无评分
摘要
Background Angiogenesis is a key rate-limiting step in the process of tumour progression. Cancer-associated fibroblasts (CAFs), the most abundant component OSCC stroma, play important roles in pro-angiogenesis. Recently, the stroma “reverse Warburg effect” was proposed, and PFKFB3 has been brought to the forefront as a metabolic enzyme regulating glycometabolism. However, it remains unclear whether glycometabolism reprogramming is involved in promoting the angiogenesis of CAFs. Methods CAFs and paracancerous fibroblasts (PFs) were isolated from OSCC and adjacent tissues. We detected the pro-angiogenesis and glycometabolism phenotype of three pairs of fibroblasts. Targeted blockage of PFKFB3 or activation of PGC-1α signal was used to investigate the effect of glycolysis on regulating angiogenesis of CAFs in vitro and vivo. Results CAFs exhibited metabolic reprogramming and enhanced proangiogenic phenotype compared with PFs. Inhibition of PFKFB3-dependent glycolysis impaired proangiogenic factors (VEGF-A, PDGF-C and MMP9) expression in CAFs. Furthermore, CAFs proangiogenic phenotype was regulated by glycometabolism through the PGC-1α/PFKFB3 axis. Consistently, PGC-1α overexpression or PFKFB3 knockdown in CAFs slowed down tumour development by reducing tumour angiogenesis in the xenograft model. Conclusion CAFs of OSCC are characterised with glycometabolic reprogramming and enhanced proangiogenic phenotypes. Our findings suggest that activating PGC-1α signalling impairs proangiogenic phenotype of CAFs by blocking PFKFB3-driven glycolysis.
更多
查看译文
关键词
Glycobiology,Oral cancer,Biomedicine,general,Cancer Research,Epidemiology,Molecular Medicine,Oncology,Drug Resistance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要