谷歌浏览器插件
订阅小程序
在清言上使用

Role of Uroguanylin's Signalling Pathway in the Development of Ischaemic Stroke

European journal of neuroscience/EJN European journal of neuroscience(2022)

引用 2|浏览7
暂无评分
摘要
Stroke is one of the leading causes of mortality and disability worldwide. By affecting bradykinin function, activation of guanylate cyclase (GC)-A has been shown to have a neuroprotective effect after ischaemic stroke, whereas the same has not been confirmed for GC-B; therefore, we aimed to determine the possible role of GC-C and its agonist, uroguanylin (UGN), in the development of stroke. In this study, middle cerebral artery occlusion (MCAO) was performed on wild-type (WT), GC-C KO and UGN KO mice. MR images were acquired before and 24 h after MCAO. On brain slices 48 h after MCAO, the Ca2+ response to UGN stimulation was recorded. Our results showed that the absence of GC-C in GC-C KO mice resulted in the development of smaller ischaemic lesions compared with WT littermates, which is an opposite effect compared with the effects of GC-A agonists on brain lesions. WT and UGN KO animals showed a stronger Ca2+ response upon UGN stimulation in astrocytes of the peri-ischaemic cerebral cortex compared with the same cortical region of the unaffected contralateral hemisphere. This stronger activation was not observed in GC-C KO animals, which may be the reason for smaller lesion development in GC-C KO mice. The reason why GC-C might affect Ca2+ signalling in peri-ischaemic astrocytes is that GC-C is expressed in these cells after MCAO, whereas under normoxic conditions, it is expressed mainly in cortical neurons. Stronger activation of the Ca2+-dependent signalling pathway could lead to the stronger activation of the Na+/H+ exchanger, tissue acidification and neuronal death.
更多
查看译文
关键词
astrocytes,Ca2+ signalling,GC-C knockout animals,guanylate cyclase C,UGN knockout animals
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要