谷歌浏览器插件
订阅小程序
在清言上使用

Understanding astrocyte differentiation: Clinical relevance, technical challenges, and new opportunities in the omics era

WIRES MECHANISMS OF DISEASE(2022)

引用 5|浏览14
暂无评分
摘要
Astrocytes are a major type of glial cells that have essential functions in development and homeostasis of the central nervous system (CNS). Immature astrocytes in the developing CNS support neuronal maturation and possess neural-stem-cell-like properties. Mature astrocytes partially lose these functions but gain new functions essential for adult CNS homeostasis. In pathological conditions, astrocytes become "reactive", which disrupts their mature homeostatic functions and reactivates some immature astrocyte-like properties, suggesting a partial reversal of astrocyte maturation. The loss of homeostatic astrocyte functions contributes to the pathogenesis of various neurological conditions, and therefore activating maturation-promoting mechanisms may be a promising therapeutic strategy to restore homeostasis. Manipulating the mechanisms underlying astrocyte maturation might also allow to facilitate CNS regeneration by enhancing developmental functions of adult astrocytes. However, such therapeutic strategies are still some distance away because of our limited understanding of astrocyte differentiation and maturation, due to biological and technical challenges, including the high degree of similarity of astrocytes with neural stem cells and the shortcomings of astrocyte markers. Current advances in systems biology have a huge potential to overcome these challenges. Recent transcriptomic analyses have already revealed new astrocyte markers and new regulators of astrocyte differentiation. However, the epigenomic changes that presumably occur during astrocyte differentiation remain an important, largely unexplored area for future research. Emerging technologies such as CRISPR/Cas9-based functional screens will further improve our understanding of the mechanisms underlying astrocyte differentiation. This may open up new clinical approaches to restore homeostasis in neurological disorders and/or promote CNS regeneration. This article is categorized under: Neurological Diseases > Genetics/Genomics/Epigenetics Neurological Diseases > Stem Cells and Development Neurological Diseases > Molecular and Cellular Physiology
更多
查看译文
关键词
astrocytes,cell differentiation,epigenomics,neural development,neurological disorders,neural repair,regeneration,transcriptomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要