Synthetic Polypeptides with Cationic Arginine Moieties Showing High Antimicrobial Activity in Similar Mineral Environments to Blood Plasma

POLYMERS(2022)

引用 3|浏览2
暂无评分
摘要
Translocation of cell-penetrating peptides is promoted by incorporated arginine or other guanidinium groups. However, relatively little research has considered the role of these functional groups on antimicrobial peptide activity. A series of cationic linear-, star- and multi-branched-poly(L-arginine-co-L-phenylalanine) have been synthesized via the ring-opening copolymerizations of corresponding N-carboxyanhydride monomers followed by further modifications using the N-heterocyclic carbene organocatalyst. All the polymers are characterized by the random coiled microstructure. Antibacterial efficacy, tested by the gram-positive B. subtilis bacteria and the gram-negative E. coli bacteria, was sensitive to the structure and relative composition of the copolymer and increased in the order of linear- < star- < multi-branched structure. The multi-branched-p[(L-arginine)(23)-co-(L-phenylalanine)(7)](8) polymer showed the best antibacterial property with the lowest minimum inhibitory concentration values of 48 mu g mL(-1) for E. coli and 32 mu g mL(-1) for B. subtilis. The efficacy was prominent for B. subtilis due to the anionic nature of its membrane. All of the resultant arginine moiety-containing polypeptides showed excellent blood compatibility. The antibiotic effect of the copolymers with arginine moieties was retained even in the environment bearing Ca2+, Mg2+, and Na+ ions similar to blood plasma. The cationic arginine-bearing copolypeptides were also effective for the sterilization of naturally occurring sources of water such as lakes, seas, rain, and sewage, showing a promising range of applicability.
更多
查看译文
关键词
amino acids, antimicrobial peptides, arginine, N-carboxyanhydrides, polypeptides, ring-opening polymerization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要