Simultaneous intruding of mafic and felsic magmas into the extending continental crust caused by mantle plume underplating: 2D magmatic-thermomechanical modeling and implications for the Paleoproterozoic Karelian Craton

TECTONOPHYSICS(2022)

引用 2|浏览0
暂无评分
摘要
Available data suggest that the breakup of the Neoarchean Kenorland supercontinent at 2.5-2.4 Ga was likely triggered by a large mantle plume upwelling that caused significant magmatism. Here, we present 2D high-resolution magmatic-thermomechanical numerical models of extension of the continental crust underplated by a hot mantle plume material. Using this model, it is demonstrated that mantle plume underplating generates a large amount of mafic melt by decompression melting. This melt penetrates into the extending continental crust along normal faults thereby forming multiple generations of mafic dyke-like intrusions along normal faults. In case of extension velocity of 0.2-1 cm/yr, lower crustal heating and hot mafic melt emplacement may cause partial melting of the continental crust that can generate significant volume of felsic melts. This in turn triggers emplacement of felsic intrusions that temporarily and spatially associate with the mafic dyke-like intrusions. The modeling results agree well with geological data from the Karelian Craton and provide possible explanation for the observed association of Paleoproterozoic mafic dykes and felsic intrusions which formed in a relatively short time interval (up to 20 Myrs) in the early stages of the supercontinent breakup.
更多
查看译文
关键词
Plume, Continental crust, Extension, Intrusions, Modeling, Karelian craton
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要