Development of a movable standing wave resonant test system for fundamental power couplers with an extraordinary power gain

PHYSICAL REVIEW ACCELERATORS AND BEAMS(2022)

引用 2|浏览8
暂无评分
摘要
Off-line high-power tests of the fundamental power couplers prior to their on-line operations are of importance for ensuring their operating reliability and stability. To test the couplers using a limited power supply effectively, a movable standing wave (SW) resonant test system with an extraordinary power gain has been developed at Institute of Modern Physics, Chinese Academy of Sciences (IMP, CAS). The system consists of a movable resonator having two movable shorts for the enhancement and movement of the SW field, and a tunable secondary coupler for feeding power into the resonator without reflection. The proof-ofprinciple structure of the system has been built and tested both at the low-power and at the high-power levels. The low-power test demonstrates that the moving range of the SW resonant field is over half a wavelength which ensures that the fundamental couplers can be tested by SW field at all reflected phases, and the system can provide a power gain ranging from 50 to 94, corresponding to 200-376 (4 x 50-4 x 94) of power gain in the case of traveling wave resonant ring system. Two types of multipacting inside the couplers were observed during the high-power tests and the mechanism of their influences on the power gain was analyzed. This movable and high-power-gain solution can be beneficial for the promotion of SW resonant test systems for fundamental couplers.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要