Physiological impacts of temperature variability and climate warming in hellbenders (Cryptobranchus alleganiensis).

CONSERVATION PHYSIOLOGY(2021)

引用 1|浏览9
暂无评分
摘要
Cold-adapted hellbender salamanders that inhabit cool mountain streams are expected to fare poorly under warmer projected climate scenarios. This study investigated the physiological consequences of long-term, naturalistic temperature variation on juvenile hellbenders under simulated current and warmer (+1.6 C) climates vs. controlled steady temperatures. Mean temperature and temperature variability were both important predictors of growth as indicated by monthly body mass change (%), stress as indicated by neutrophil:lymphocyte (N:L) ratio and bacteria-killing ability of blood. Cold exposure in hellbenders was associated with weight loss, increased N:L ratios and reduced Escherichia coli killing ability of blood, and these effects were less pronounced under a warmer climate scenario. These observations suggest that cold periods may be more stressful for hellbenders than previously understood. Growth rates peaked in late spring and late fall around 14-17°C. Hellbenders experiencing warmer simulated climates retained body condition better in winter, but this was counter-balanced by a prolonged lack of growth in the 3-month summer period leading up to the fall breeding season where warmer simulated conditions resulted in an average loss of -0.6% body mass/month, compared to a gain +1.5% body mass/month under current climate scenario. Hellbenders can physiologically tolerate projected warmer temperatures and temperature fluctuations, but warmer summers may cause animals to enter the fall breeding season with a caloric deficit that may have population-level consequences.
更多
查看译文
关键词
thermal physiology, salamander, immune function, growth, climate change, Amphibian
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要