Infrared erbium photoluminescence enhancement in silicon carbide nano-pillars

JOURNAL OF APPLIED PHYSICS(2021)

引用 11|浏览4
暂无评分
摘要
Color centers that emit light at telecommunication wavelengths are promising candidates for future quantum technologies. A pressing challenge for the broad use of these color centers is the typically low collection efficiency from bulk samples. Here, we demonstrate enhancements of the emission collection efficiency for Er 3 + incorporated into 4H-SiC surface nano-pillars fabricated using a scalable top-down approach. Optimal Er ion implantation and annealing strategies are investigated in detail. The substitutional fraction of Er atoms in the SiC lattice is closely correlated with the peak photoluminescence intensity. This intensity is further enhanced via spatial wave-guiding once the surface is patterned with nano-pillars. These results have broad applicability for use with other color centers in SiC and also demonstrate a step toward a scalable protocol for fabricating photonic quantum devices with enhanced emission characteristics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要