GaN and InGaN Based Nanocomposites for Ammonia Gas Sensing Applications

PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS(2022)

引用 2|浏览3
暂无评分
摘要
Gallium nitride (GaN) and indium gallium nitride (InGaN) nanostructures, and their nanocomposites with reduced graphene oxide (rGO) are prepared by solvothermal method and used as sensing materials for ammonia gas. The ammonia sensing characteristics are studied by coating the synthesized GaN and InGaN nanostructures, and their nanocomposites on interdigitated electrodes. The sensing parameters, i.e., sensing response, selectivity, and stability, are studied for various operating temperatures and relative humidity. The pristine GaN and InGaN exhibit a sensing response of 23.8% and 28.1% for 200 ppm concentration at 300 K, whereas the nanocomposites of GaN and InGaN show an increased response of 37.4% and 44.2%. This improvement in the nanocomposites maybe ascribed to the better conductivity, higher number of gas adsorption sites and reduced bandgap. It is found that these materials are an excellent choice for ammonia gas sensing application.
更多
查看译文
关键词
ammonia sensors, hydrothermal synthesis, III-nitrides, interdigitated electrodes, reduced graphene oxide nanocomposites
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要