Investigation on bioactivity, mechanical stability, bactericidal activity and in-vitro biocompatibility of magnesium silicates for bone tissue engineering applications

JOURNAL OF MATERIALS RESEARCH(2022)

引用 8|浏览5
暂无评分
摘要
The current work reports the biocompatibility and mechanical stability of enstatite and forsterite bioceramics prepared by sol–gel combustion method. XRD results conferred that enstatite and forsterite phase formation take place at 1000 °C and 900 °C respectively. TEM micrographs indicated the particle size of enstatite in the micron range while forsterite is in the range of 100–200 nm. The FT-IR spectra of forsterite after biomineralization revealed the presence of phosphate and carbonate groups shows apatite deposition ability of forsterite. The slow degradation and better apatite deposition of forsterite resulted in ten folds greater compressive strength than enstatite. Both the bioceramics have shown a remarkable impact on inhibiting the growth of clinical pathogens at a very low concentration. The good hBMSCs attachment and significant proliferation revealed the cytocompatibility of enstatite and forsterite. These observations suggested that magnesium silicate bioceramics can be explored for load-bearing applications, maxillofacial reconstruction and septic arthritis. Graphical abstract
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要