谷歌浏览器插件
订阅小程序
在清言上使用

Early Pleistocene Climate-Induced Erosion of the Alaska Range Formed the Nenana Gravel

Geology(2021)

引用 4|浏览16
暂无评分
摘要
The Pliocene-Pleistocene transition resulted in extensive global cooling and glaciation, but isolating this climate signal within erosion and exhumation responses in tectonically active regimes can be difficult. The Nenana Gravel is a foreland basin deposit in the northern foothills of the Alaska Range (USA) that has long been linked to unroofing of the Alaska Range starting ca. 6 Ma. Using Al-26/Be-10 cosmogenic nuclide burial dating, we determined the timing of deposition of the Nenana Gravel and an overlying remnant of the first glacial advance into the northern foothills. Our results indicate that initial deposition of the Nenana Gravel occurred at the onset of the Pleistocene ca. 2.34 Ma and continued until at least ca. 1.7 Ma. The timing of initial deposition is correlative with expansion of the Cordilleran ice sheet, suggesting that the deposit formed due to increased glacial erosion in the Alaska Range. Abandonment of Nenana Gravel deposition occurred prior to the first glaciation extending into the northern foothills. This glaciation was hypothesized to have occurred ca. 1.5 Ma, but we found that it occurred ca. 0.39 Ma. A Pleistocene age for the Nenana Gravel and marine oxygen isotope stage 10 age for the oldest glaciation of the foothills necessitate reanalysis of incision and tectonic rates in the northern foothills of the Alaska Range, in addition to a shift in perspective on how these deposits fit into the climatic and tectonic history of the region.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要