Research on Key Materials and Devices of Organic Light-emitting Transistors

Acta Chimica Sinica(2022)

引用 8|浏览6
暂无评分
摘要
Organic light-emitting transistor (OLET) is a kind of revolutionary miniaturized optoelectronic device which integrates the functions of an organic field-effect transistor and an organic light-emitting diode in a single device. This unique integrated architecture of OLET makes it show great potential for studies of fundamental properties of organic materials, applications in fields of novel organic flexible display/lighting technology, organic electrically-pumped lasers as well as on-chip optoelectronic systems. To realize the full potential of these technologies, the development of key materials and optimization of device fabrication techniques including device structures and processing conditions are highly required. Based on the comprehensive study of the development and basic scientific problems in the OLET field, in the past five years, the authors' research group and collaborators carried out systematical exploratory researches with focuses on the development of high mobility emissive manic semiconductors and construction of high performance OLETs with line- and area-feature emission. Up to now, a series of achievements have been obtained. For instance, we developed a series of anthracene- and fluorene-based high mobility emissive organic semiconductors from the origin of molecular design innovation, which overcomes the science bottleneck of impossibility for integrating high charge carrier mobility and strong emission in the same molecule. Furthermore, this molecular design concept also shows a certain feasibility for the development of other small molecular systems and high mobility emissive conjugated polymers. Moreover, with the mind of integrating the advantages of area-emission of vertical OLET and good gate-tenability and stability of planar OLET, we propose a new area-emission planar OLET architecture, which exhibits a large aperture ratio of over 80% due to the arbitrary tunability of device structure. These preliminary experimental researches and results will provide valuable guidelines for future research of OLETs and their related fields.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要