Geometallurgy of Cobalt Black Ores in the Katanga Copperbelt (Ruashi Cu-Co Deposit): A New Proposal for Enhancing Cobalt Recovery


引用 0|浏览2
Copper-cobalt deposits in the Central African Copperbelt belong to the Sediment-Hosted Stratiform Copper (SHSC) type and are situated in the Neoproterozoic Katanga Supergroup. This paper describes in detail the geology, geochemistry and hydrometallurgy of cobalt, with a special focus on the Black Ore Mineralised Zone (BOMZ) unit from the Ruashi Cu-Co deposit as a case study. Based on results from fieldwork and laboratory testing, it was concluded that the BOMZ consists of a succession of massive and stratified dolostones, which are weathered into carbonaceous clay dolostones and clays. The Lower "Calcaire a Minereaux Noirs Formation" (Lower CMN Formation) consists of stratified and finely laminated dolostones, which are weathered at the surface into clayey to siliceous dolostones. The cobalt concentration in the weathering zone is due to supergene enrichment, a process that is linked to the formation of a cobalt cap. The ore consists of heterogenite associated with minor amounts of chrysocolla and malachite. Minor carrollite, chalcopyrite, chalcocite and bornite are present in unweathered fragments. The cobalt grade in both the BOMZ and Lower CMN decreases within depth while the copper grade increases. These grade changes reflect the variation in mineralogy with depth from heterogenite with minor amounts of malachite and chrysocolla to malachite, chrysocolla with traces of heterogenite, spherocobaltite, chalcocite, chalcopyrite, carrollite and bornite. Based on the Cu (100(x)AS Cu/TCu) and Co ratio (100(x)AS Co/TCo), which is related to the ore mineralogy, oxide ores (Cu ratio >= 75%) and oxide dominant mixed ores (Cu ratio < 75%, containing the copper sulphide chalcocite) can be differentiated in both the BOMZ and Lower CMN. The absence of talc and the low concentration of Ni, Mn and Fe, on the one hand, and the high-grade Cu in the BOMZ, on the other hand, facilitate the hydrometallurgy of cobalt but require a specific processing. Consequently, the recovery of Co from the BOMZ requires the application of a processing method that is based on sulphuric acid (30 g/L) leaching under reducing conditions (300-350 mV) and the removal of impurities (Cu > 95% and Mn approximate to 99%) from the pregnant leach solution (PLS) by solvent extraction (SX) prior to the precipitation of cobalt as a high-grade hydroxide (40.5%). The sulphuric acid leaching of the BOMZ enabled achieving, after 8 h of magnetic stirring (500 rpm), a highest yield of 93% Co, with other major elements Mn (84%) and Cu (40%). The latter forms a main co-product of the Co exploitation. In contrast, the highest leaching yield for Fe remained smaller than 5%.
cobalt, copper, ore mineralogy, geochemistry, hydrometallurgy, Katanga Copperbelt
AI 理解论文