Rapid nitrate reduction produces pulsed NO and N2O emissions following wetting of dryland soils

Biogeochemistry(2022)

引用 11|浏览26
暂无评分
摘要
Soil drying and wetting cycles can produce pulses of nitric oxide (NO) and nitrous oxide (N2O) emissions with substantial effects on both regional air quality and Earth’s climate. While pulsed production of N emissions is ubiquitous across ecosystems, the processes governing pulse magnitude and timing remain unclear. We studied the processes producing pulsed NO and N2O emissions at two contrasting drylands, desert and chaparral, where despite the hot and dry conditions known to limit biological processes, some of the highest NO and N2O flux rates have been measured. We measured N2O and NO emissions every 30 min for 24 h after wetting soils with isotopically-enriched nitrate and ammonium solutions to determine production pathways and their timing. Nitrate was reduced to N2O within 15 min of wetting, with emissions exceeding 1000 ng N–N2O m−2 s−1 and returning to background levels within four hours, but the pulse magnitude did not increase in proportion to the amount of ammonium or nitrate added. In contrast to N2O, NO was emitted over 24 h and increased in proportion to ammonium addition, exceeding 600 ng N–NO m−2 s−1 in desert and chaparral soils. Isotope tracers suggest that both ammonia oxidation and nitrate reduction produced NO. Taken together, our measurements demonstrate that nitrate can be reduced within minutes of wetting summer-dry desert soils to produce large N2O emission pulses and that multiple processes contribute to long-lasting NO emissions. These mechanisms represent substantial pathways of ecosystem N loss that also contribute to regional air quality and global climate dynamics.
更多
查看译文
关键词
Drylands, Nitrogen, Nitric oxide, Nitrous oxide, Nitrate, Pulse
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要