Electroluminescence of monolayer WS2 in a scanning tunneling microscope: Effect of bias polarity on spectral and angular distribution of emitted light

PHYSICAL REVIEW B(2022)

引用 5|浏览14
暂无评分
摘要
Inelastic electron tunneling in a scanning tunneling microscope is used to generate excitons in monolayer tungsten disulfide (WS2). Excitonic electroluminescence is measured both at positive and negative sample bias. Using optical spectroscopy and Fourier-space optical microscopy, we show that the bias polarity of the tunnel junction determines the spectral and angular distribution of the emitted light. At positive sample bias, only emission from excitonic species featuring an in-plane transition dipole moment is detected. Based on the spectral distribution of the emitted light, we infer that the dominant contribution is from charged excitons, i.e., trions. At negative sample bias, additional contributions from lower-energy excitonic species are evidenced in the emission spectra and the angular distribution of the emitted light reveals a mixed character of in-plane and out-of-plane transition dipole moments.
更多
查看译文
关键词
electroluminescence,scanning tunneling microscope,monolayer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要