Hemin protects against Zika virus infection by disrupting virus-endosome fusion.

Antiviral research(2022)

引用 3|浏览13
暂无评分
摘要
Zika virus (ZIKV) is a flavivirus that causes severe neuropathology in newborns and adults. There is no ZIKV-specific treatment or preventative. Therefore, it is urgent to develop safe and effective anti-ZIKV agents. Hemin, an iron-binding porphyrin, has been authorized by FDA to treat acute porphyria since the 1970s. Here, we aim to evaluate the anti-ZIKV effect of hemin in SNB-19 cells (a human glioma cell line) and explore the underlying mechanism based on the virus life cycle and functions of the host cell. Our study found that hemin has a strong activity to protect SNB-19 cells from ZIKV infection presented by decreased expression of viral proteins and virus yield. Meanwhile, ZIKV infection caused STAT1/IRF1 signaling activation and induced inflammatory responses in SNB-19 cells, which was relieved by hemin treatment. HO-1 has been reported to be potently induced by hemin and play a broad-spectrum antiviral effect. Intriguingly, hemin could still exert anti-ZIKV activity upon HO-1 siRNA treatment. Then, we conducted a time-of-addition assay, the result indicated hemin works mainly by interfering with the virus entry process. Further experiments excluded the effects of hemin on AXL-dependent viral adsorption and clathrin-mediated endocytosis processes. Subsequently, by fluorescence spectroscopy studies, intracellular fusion assay and syncytia formation assay, we revealed that hemin acts on the process of virus-endosome fusion. This study elaborated that hemin could play anti-ZIKV activity by disrupting the virus-endosome fusion process and shed new light on developing novel agents against ZIKV infection.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要