Redox regulation of the SARS-CoV-2 main protease provides new opportunities for drug design

biorxiv(2022)

引用 1|浏览14
暂无评分
摘要
Besides vaccines, the development of antiviral drugs targeting SARS-CoV-2 is critical for stopping the current COVID-19 pandemic and preventing future outbreaks. The SARS-CoV-2 main protease (Mpro), a cysteine protease with essential functions in viral replication, has been validated as an effective drug target. Here, we show that Mpro is subject to redox regulation and reversibly switches between the enzymatically active dimer and the functionally dormant monomer through redox modifications of cysteine residues. These include sulfenylation, disulfide formation between the catalytic cysteine and a proximal cysteine, and generation of an allosteric lysine-cysteine SONOS bridge that is required for structural stability under oxidative stress conditions, such as those exerted by the innate immune system. We identify homo- and heterobifunctional reagents that mimic the redox switching and possess antiviral activity. The discovered redox switches are conserved in main proteases from other coronaviruses, e.g. MERS and SARS-CoV, indicating their potential as common druggable sites. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
redox regulation,main protease,drug design,sars-cov
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要