Mechanotransductive feedback control of endothelial cell motility and vascular morphogenesis

Devon E Mason, Paula Camacho, Megan Goeckel, Brendan R Tobin,Sebastian L Vega, Pei-Hsun Wu,Dymonn Johnson, Su-Jin Heo,Denis Wirtz, Jason A Burdick,Levi Wood, Brain Y Chow, Amber N Stratman,Joel D Boerckel

biorxiv(2024)

引用 1|浏览8
暂无评分
摘要
Vascular morphogenesis requires persistent endothelial cell motility that is responsive to diverse and dynamic mechanical stimuli. Here, we interrogated the mechanotransductive feedback dynamics that govern endothelial cell motility and vascular morphogenesis. We show that the transcriptional regulators, YAP and TAZ, are activated by mechanical cues to transcriptionally limit cytoskeletal and focal adhesion maturation, forming a conserved mechanotransductive feedback loop that mediates human endothelial cell motility in vitro and zebrafish intersegmental vessel (ISV) morphogenesis in vivo. This feedback loop closes in 4 hours, achieving cytoskeletal equilibrium in 8 hours. Feedback loop inhibition arrested endothelial cell migration in vitro and ISV morphogenesis in vivo. Inhibitor washout at 3 hrs, prior to feedback loop closure, restored vessel growth, but washout at 8 hours, longer than the feedback timescale, did not, establishing lower and upper bounds for feedback kinetics in vivo. Mechanistically, YAP and TAZ induced transcriptional suppression of RhoA signaling to maintain dynamic cytoskeletal equilibria. Together, these data establish the mechanoresponsive dynamics of a transcriptional feedback loop necessary for persistent endothelial cell migration and vascular morphogenesis. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要