Inter Galactic Magnetic field constraints through the gamma ray observations of the Extreme High-frequency-peaked BL Lac candidate HESS 1943+213

37TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2021(2022)

引用 1|浏览0
暂无评分
摘要
Extreme High-frequency-peaked BL Lac (EHBL) objects, a subclass of blazars characterised by a synchrotron peak frequency exceeding 10(17) Hz, and, in some cases, an inverse Compton peak energy exceeding 1 TeV, are ideal sources to study the InterGalactic Magnetic Field (IGMF) due to the hardness of their spectrum. HESS J1943+213 is a Very High Energy (VHE, >100 GeV) gamma-ray source shining through the Galactic Plane discovered by HESS. Recently, also VERITAS published a VHE spectrum spanning from 200 GeV up to about 2 TeV consistent with that of HESS within the errors (photon index=2.8). The archetypical EHBL source is 1ES 0229+200 which has a redshift z=0.14 and a similar VHE slope (photon index=2.9). Since the observed flux of HESS J1943+213 at 1 TeV is more than a factor of two larger, and its redshift is bigger (z<0.23), a much larger reprocessed power is expected, which allowed us to study the magnetic field strength with great accuracy. We used the simulation code CRpropa 3 to simulate the cascade emission assuming different IGMF configurations and a detailed analysis of the 10 years of Fermi-LAT data to extend the observed VHE spectrum down to 5 GeV. Comparing the cascade spectrum with the combined spectra from Fermi-LAT and Cherenkov telescopes we derived a lower limit on the IGMF strength of the order of 6.10(-14) G which is at least a factor of 4 larger than previously published results obtained with the source 1ES0229+200. Effects of the duty cycle are also taken into consideration.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要