Activin A Reduces GIRK Current to Excite Dentate Gyrus Granule Cells.

FRONTIERS IN CELLULAR NEUROSCIENCE(2022)

引用 2|浏览19
暂无评分
摘要
Activin A, a member of the TGF-β family, is recognized as a multifunctional protein in the adult brain with a particular impact on neuronal circuits associated with cognitive and affective functions. Activin receptor signaling in mouse hippocampus is strongly enhanced by the exploration of an enriched environment (EE), a behavioral paradigm known to improve performance in learning and memory tasks and to ameliorate depression-like behaviors. To interrogate the relationship between EE, activin signaling, and cellular excitability in the hippocampus, we performed ex vivo whole-cell recordings from dentate gyrus (DG) granule cells (GCs) of wild type mice and transgenic mice expressing a dominant-negative mutant of activin receptor IB (dnActRIB), which disrupts activin signaling in a forebrain-specific fashion. We found that, after overnight EE housing, GC excitability was strongly enhanced in an activin-dependent fashion. Moreover, the effect of EE on GC firing was mimicked by pre-treatment of hippocampal slices from control mice with recombinant activin A for several hours. The excitatory effect of activin A was preserved when canonical SMAD-dependent signaling was pharmacologically suppressed but was blocked by inhibitors of ERK-MAPK and PKA signaling. The involvement of a non-genomic signaling cascade was supported by the fact that the excitatory effect of activin A was already achieved within minutes of application. With respect to the ionic mechanism underlying the increase in intrinsic excitability, voltage-clamp recordings revealed that activin A induced an apparent inward current, which resulted from the suppression of a standing G protein-gated inwardly rectifying K+ (GIRK) current. The link between EE, enhanced activin signaling, and inhibition of GIRK current was strengthened by the following findings: (i) The specific GIRK channel blocker tertiapin Q (TQ) occluded the characteristic electrophysiological effects of activin A in both current- and voltage-clamp recordings. (ii) The outward current evoked by the GIRK channel activator adenosine was significantly reduced by preceding EE exploration as well as by recombinant activin A in control slices. In conclusion, our study identifies GIRK current suppression via non-canonical activin signaling as a mechanism that might at least in part contribute to the beneficial effects of EE on cognitive performance and affective behavior.
更多
查看译文
关键词
activin, hippocampus, GIRK current, action potential, dentate gyrus granule cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要