Rapid and flexible online desalting using Nafion-coated melamine sponge for mass spectrometry analysis

RAPID COMMUNICATIONS IN MASS SPECTROMETRY(2022)

引用 1|浏览9
暂无评分
摘要
Rationale The performance of mass spectrometry (MS) analysis is often affected by the presence of salt ions. To achieve optimal MS detection results, desalting is necessary for samples with high salt concentrations. We report a rapid, low-cost and flexible online desalting method using Nafion-coated sponge. This method is easy to perform and can be implemented to a wide range of customized fluidic systems. Methods Nafion-coated melamine sponge was fabricated by soaking a glass tube containing a melamine sponge in Nafion solution and then drying overnight. The online desalting workflow is comprised of three major parts: (1) Syringe pump, which provides a continuous flow for the online fluid system; (2) Nafion sponge in a glass tube, where the online desalting of sample solution happens; (3) Capillary Vibrating Sharp-Edge Spray Ionization (cVSSI), which is an ionization technique to ionize the desalted analytes. Results Effective online desalting of a 10 mM NaCl solution was demonstrated for a wide range of molecules including small molecules, peptides, DNAs, and proteins using a flow rate of 10 mu L/min. By incorporating multiple pieces of the Nafion-coated sponge, effective desalting for ubiquitin and cytochrome c (Cyt-c) from physiological buffers, including phosphate-buffered saline (PBS) and tris-buffered saline (TBS), were also achieved. For molecules that are sensitive to low pH conditions after desalting, a R-SO3NH4-type Nafion-coated sponge was fabricated. Desalting of ubiquitin, oligosaccharide, and DNA oligomers from 10 mM NaCl or 10 mM KCl solutions was demonstrated. Conclusions Flexible, low-cost, and efficient online desalting was achieved by the Nafion-coated sponge. A variety of molecules ranging from small molecules, peptides, proteins to oligosaccharides and DNAs can be desalted for MS analysis. The desalting by Nafion sponge has great potential for desalting applications that require customized fluidic design and rapid analysis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要