Cortisol Regulates Cerebral Mitochondrial Oxidative Phosphorylation and Morphology of the Brain in a Region-Specific Manner in the Ovine Fetus

BIOMOLECULES(2022)

引用 1|浏览17
暂无评分
摘要
In adults, glucocorticoids are stress hormones that act, partly, through actions on mitochondrial oxidative phosphorylation (OXPHOS) to increase energy availability. Before birth, glucocorticoids are primarily maturational signals that prepare the fetus for new postnatal challenges. However, the role of the normal prepartum glucocorticoid rise in preparing mitochondria for the increased postnatal energy demands remains largely unknown. This study examined the effect of physiological increases in the fetal cortisol concentration on cerebral mitochondrial OXPHOS capacity near term (similar to 130 days gestation, term similar to 145 days gestation). Fetal sheep were infused with saline or cortisol for 5 days at similar to 0.8 of gestation before the mitochondrial content, respiratory rates, abundance of the electron transfer system proteins and OXPHOS efficiency were measured in their cortex and cerebellum. Cerebral morphology was assessed by immunohistochemistry and stereology. Cortisol treatment increased the mitochondrial content, while decreasing Complex I-linked respiration in the cerebellum. There was no effect on the cortical mitochondrial OXPHOS capacity. Cortisol infusion had regional effects on cerebral morphology, with increased myelination in the cerebrum. The findings demonstrate the importance of cortisol in regulating the cerebral mitochondrial OXPHOS capacity prenatally and have implications for infants born preterm or after glucocorticoid overexposure due to pregnancy complications or clinical treatment.
更多
查看译文
关键词
cortisol, fetus, mitochondria, brain
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要