Multiple-Resonance Extension and Spin-Vibronic-Coupling-Based Narrowband Blue Organic Fluorescence Emitters with Over 30% Quantum Efficiency

ADVANCED MATERIALS(2022)

引用 40|浏览10
暂无评分
摘要
Achieving narrow-bandwidth emission and high external quantum efficiency (EQE) simultaneously is a challenge for next-generation blue-emitting organic light-emitting diodes (OLEDs). In this study, novel multiple-resonance thermally activated delayed fluorescence (MR-TADF) emitters are developed by fusing an indolocarbazole unit with two carbazole skeletons using para-oriented nitrogen atoms. The resulting rigid and planar pi-system without electron-accepting atoms exhibits pure blue photoluminescence at 470 nm, reaching a 100% quantum yield with a full-width-at-half-maximum (FWHM) of 25 nm. Higher-level quantum chemistry calculations confirm an MR effect within the extended pi-conjugation and an enhanced triplet-to-singlet crossover (10(4) s(-1)) through a reduced energy gap (Delta E-ST) coupled with large spin-vibronic coupling mediated by low-lying triplet excited states. An OLED fabricated using the MR-TADF emitter with CIE color coordinates of (0.12, 0.16) exhibits a record high EQE of 30.9% and a small FWHM of 23 nm. With further optimization of the device structure, a high EQE of 33.8% is achieved without additional outcoupling enhancements owing to the near-perfect horizontal alignment of the emitting dipoles.
更多
查看译文
关键词
blue emission, multiple-resonance, organic light-emitting diodes, spin-vibronic coupling, thermally activated delayed fluorescence
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要