Chrome Extension
WeChat Mini Program
Use on ChatGLM

Global Soil Moisture Drought Identification and Responses to Natural and Anthropogenic Forcings

Journal of hydrology(2022)

Cited 4|Views6
No score
Abstract
The spatio-temporal patterns of drought changes and relevant forcings are still open for debate, especially under global warming, even though agricultural drought has long been receiving increasing concern for food security and sustainable development. In this study, we depicted global spatiotemporal patterns of agricultural drought using the Soil Water Deficit Index (SWDI) and reflected on the underlying forcings using the optimal fingerprint method. Three aspects of droughts were analyzed, i.e. drought duration (DD), drought magnitude (DM) and drought extremum (DE) over three regions, i.e. global, monsoon and non-monsoon regions. We found distinct spatial heterogeneity of DD, DM and DE. However, DM (DE) had mainly a decreasing (increasing) tendency. Anthropogenic forcing ([ANT] including greenhouse gas, anthropogenic aerosol, and ozone) and greenhouse gas forcing (GHG) played a prominent role in driving drought changes and were followed by the combination of anthropogenic and natural forcing (ALL). Soil moisture drought (DD, DM and DE) responses to external forcing of ANT and GHG were detected more easily in the monsoon region than in the non-monsoon region. Specifically, DM changes due to ANT (2.58 per century) contributed 39.88% of the DM changes by ALL (6.47 per century) in the monsoon regions, comparatively, the GHG and ANT induced changes of DM in the non-monsoon regions were quite slight. This study further clarified the impacts of anthropogenic warming on agricultural drought over the globe.
More
Translated text
Key words
Soil moisture,SWDI,Optimal fingerprint,Anthropogenic forcing,Attribution analysis
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined