谷歌浏览器插件
订阅小程序
在清言上使用

Deep Energy Method in Topology Optimization Applications

Acta mechanica(2022)

引用 8|浏览10
暂无评分
摘要
This paper explores the possibilities of applying physics-informed neural networks (PINNs) in topology optimization (TO) by introducing a fully self-supervised TO framework based on PINNs. This framework solves the forward elasticity problem by the deep energy method (DEM). Instead of training a separate neural network to update the density distribution, we leverage the fact that the compliance minimization problem is self-adjoint to express the element sensitivity directly in terms of the displacement field from the DEM model. Thus, no additional neural network is needed for the inverse problem. The method of moving asymptotes is used as the optimizer for updating density distribution. The implementation of Neumann, Dirichlet, and periodic boundary conditions is described in the context of the DEM model. Three numerical examples are presented to demonstrate framework capabilities: (i) compliance minimization in 2D under different geometries and loading, (ii) compliance minimization in 3D, and (iii) maximization of homogenized shear modulus to design 2D metamaterial unit cells. The results show that the optimized designs from the DEM-based framework are very comparable to those generated by the finite element method and shed light on a new way of integrating PINN-based simulation methods into classical computational mechanics problems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要