Asymmetric Thermally Activated Delayed Fluorescence Emitter for Highly Efficient Red/Near-Infrared Organic Light-Emitting Diodes

ACS APPLIED MATERIALS & INTERFACES(2022)

引用 13|浏览6
暂无评分
摘要
Developing highly efficient red/near-infrared thermally activated delayed fluorescence (TADF) materials is of great importance for organic light-emitting diodes (OLEDs). Here, we reported an asymmetric TADF emitter (TCPQ), which exhibits a high reverse intersystem crossing rate as well as a low non-radiative rate due to molecular symmetry breaking through multiple donor substitution. The coexistence of multiple donors endows TCPQ with not only near-infrared emission but also excellent device performances. As for the TCPQ-based OLEDs, the 10 and 20 wt % doped devices exhibit outstanding external quantum efficiencies (EQEs) of 21.9 and 19.2% with red emission peaks at 612 and 642 nm, respectively. Meanwhile, the non-doped device achieves an EQE of 5.4% with an emission peak at 718 nm, showing near-infrared emission. These device efficiencies are among the best performances of red/near-infrared TADF-OLEDs, demonstrating that the asymmetry design is a potential strategy for constructing long wavelength TADF materials with high efficiency.
更多
查看译文
关键词
asymmetric, highly efficient, red, NIR, thermally activated delayed fluorescence, organic light-emitting diode
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要