Soil Organic Carbon Sequestration under Long-Term Chemical and Manure Fertilization in a Cinnamon Soil, Northern China

SUSTAINABILITY(2022)

引用 2|浏览8
暂无评分
摘要
To mitigate climate change and improve food security, it is essential to understand how fertilizer strategies impact the dynamics of soil organic carbon and its fractions. The soil organic carbon (SOC), light fraction organic carbon (LFOC), and particulate organic carbon (POC) were investigated every five years in a corn (Zea mays L.) cropping system with chemical fertilization and manuring over twenty-four years (1992-2016) in a semiarid area of northern China. There were four treatments with chemical fertilizer (i.e., N1P1, N2P2, N3P3, N4P4), three treatments with chemical fertilizer plus manure (i.e., N2P1M1, N3P2M3, N4P2M2), and one treatment with manure alone (i.e., M6), and an unfertilized treatment (control). The carbon sequestration rate (C-SR) and efficiency (C-SE) of SOC, POC, and LFOC were identified. The results revealed that the fertilization treatments (N2P2, N3P3, N2P1M1, N3P2M3, N4P2M2, and M6) promoted SOC sequestration, with a sequestration rate of 0.19 similar to 1.29 Mg ha(-1) y(-1). The excess application of chemical fertilizer caused a reduction in POC, whereas the application of NP, NPM or manure resulted in greater POC sequestration in soil, with a carbon sequestration rate of 0.04 similar to 0.24 Mg ha(-1) y(-1). The LFOC stocks were 1.43 similar to 2.24 Mg ha(-1) under the NP treatments, 2.47 similar to 6.68 Mg ha(-1) under the NPM treatments and 8.12 Mg ha(-1) under the M treatment; these stocks were all higher than that of the control treatment. Different fertilization strategies affected the pools of SOC with different sequestration rates. We found the carbon sequestration rates of SOC and LFOC were logarithmically correlated with the annual carbon input. When the annual C input is approximately 1.39 Mg ha(-1) y(-1), the SOC level will be maintained; when the annual C input is higher than 0.8 Mg ha(-1) y(-1), the LFOC level increases. This study describes the relationship between carbon inputs and the SOC(LFOC) sequestration rates under continuous fertilization in arid cropland. The results further evidence that the long-term fertilization of NPM and M increases the potential for SOC sequestration and quantifies the amount of exogenous carbon input required for soil organic matter enhancement.
更多
查看译文
关键词
long-term fertilization experiment, particulate organic carbon, light fraction organic carbon, carbon sequestration rate
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要