Skin‐Inspired Thermoreceptors‐Based Electronic Skin for Biomimicking Thermal Pain Reflexes

Advanced Science(2022)

引用 36|浏览3
暂无评分
摘要
Electronic systems possessing skin-like morphology and functionalities (electronic skins [e-skins]) have attracted considerable attention in recent years to provide sensory or haptic feedback in growing areas such as robotics, prosthetics, and interactive systems. However, the main focus thus far has been on the distributed pressure or force sensors. Herein a thermoreceptive e-skin with biological systems like functionality is presented. The soft, distributed, and highly sensitive miniaturized (approximate to 700 mu m(2)) artificial thermoreceptors (ATRs) in the e-skin are developed using an innovative fabrication route that involves dielectrophoretic assembly of oriented vanadium pentoxide nanowires at defined locations and high-resolution electrohydrodynamic printing. Inspired from the skin morphology, the ATRs are embedded in a thermally insulating soft nanosilica/epoxy polymeric layer and yet they exhibit excellent thermal sensitivity (-1.1 +/- 0.3% degrees C-1), fast response (approximate to 1s), exceptional stability (negligible hysteresis for >5 h operation), and mechanical durability (up to 10 000 bending and twisting loading cycles). Finally, the developed e-skin is integrated on the fingertip of a robotic hand and a biological system like reflex is demonstrated in response to temperature stimuli via localized learning at the hardware level.
更多
查看译文
关键词
artificial thermoreceptors, dielectrophoresis, electronic skins, nanowires, printed electronics, temperature sensors, vanadium pentoxide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要